NASA

MEMORANDUM

WATER-FILM COOLING OF AN 80° TOTAL-ANGLE CONE AT

A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL

TEMPERATURES UP TO 3,000° R

By Howard S. Carter

Langley Research Center Langley Field, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON

January 1959 Declassified December 8, 1961

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 12-27-58L

WATER-FILM COOLING OF AN 80° TOTAL-ANGLE CONE AT

A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL

TEMPERATURES UP TO 3,000° R

By Howard S. Carter

SUMMARY

Film-cooling tests, with water as the coolant, were made on an $80^{\rm O}$ total-angle cone in a Mach number 2 free jet at sea-level pressure. The tests were made at free-stream total temperatures from 1,500° to 3,000° R and at free-stream Reynolds numbers per foot from 8×10^6 to 3×10^6 .

The tests showed that the downstream end of the model became very hot if the coolant rate was too small to cover the complete model with a water film. This water film was fairly symmetrical when the model was at zero angle of attack but was very asymmetrical when the model was at an angle of attack of 5° . A comparison with results of a previous transpiration-cooling test showed that, with water as the coolant, transpiration cooling was at least 2.5 times as efficient as the film cooling of the present tests.

INTRODUCTION

The survival of a long-range ballistic missile during atmospheric reentry depends to a great extent upon alleviating the heating load to the nose region. (See refs. 1, 2, and 3.) It has been determined from previous work that for large weight-drag ratios the problem cannot be solved by geometric considerations alone, such as blunting the nose or redistributing the material in the nose to improve the absorption of the incoming heat. Hence, many different cooling schemes have been suggested for keeping the nose of the reentry missile at a temperature that present materials can withstand. At present, however, the data available on the different cooling schemes are insufficient for direct

application to a given missile nose without some preliminary tests in which the actual proposed missile-nose shape and cooling scheme are used.

A program was initiated by the Pilotless Aircraft Research Division of the Langley Aeronautical Laboratory to determine the feasibility of using a film-cooling scheme on a proposed nose shape of a current missile. The proposed nose shape was an 80° total-angle cone and the coolant was distilled water ejected at the apex of the cone. The local airstream swept this water back over the surface of the cone in the form of a water film.

The parameters which varied in this present investigation were free-stream total temperature, angle of attack, coolant flow rate, and geometry of coolant ejection nozzle. The tests were made in the ethylene-heated high-temperature jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. All tests were made in this 12-inch-diameter jet at sea-level pressure for a Mach number of 2.03. The values of free-stream total temperature for the tests were approximately 1,500°, 2,000°, 2,500°, and 3,000° R. Axial-type coolant nozzles of three different diameters and one umbrella-type coolant nozzle were used in the tests. The free-stream Reynolds number per foot varied during the testing program from 3×10^6 to 8×10^6 .

SYMBOLS

Α	area, sq ft
α	angle of attack, deg
h	aerodynamic heat-transfer coefficient, Btu/(sec)(sq ft)(OR)
p	pressure, lb/sq ft
\mathfrak{q}_{l}	local heat-transfer rate, Btu/(sec)(sq ft)
Q_{A}	actual no-coolant heat load, Btu/sec
$\mathtt{Q}_{\mathbf{T}}$	theoretical no-coolant heat load, Btu/sec
r	radius, ft
ρ	density of gas flow, lb/cu ft
S	distance along cone surface meridian from apex, ft

T temperature, OR

V velocity of gas flow, ft/sec

weight of coolant per unit area of model, lb/sec per sq ft of model wetted area

M Mach number

Subscripts:

aw adiabatic wall

c coolant

∞ free stream

l local

t total

w wall

APPARATUS

Model

The model, shown in figure 1, was an 80° total-angle cone with a base diameter of 5.75 inches which was fabricated from type 347 stainless steel. The wall thickness of the cone was 0.050 inch. A tube was installed along the axis of the cone, terminating at the apex where coolant flow nozzles of various size and geometry could be inserted.

Drawings of the coolant nozzles are shown in figure 2. Three of the nozzles had straight through holes with inside diameters of 0.050, 0.150, and 0.200 inch. An umbrella nozzle designed to direct the flow tangentially over the body was also used. All nozzles were made of stainless steel and had external screw threads for mounting in the nose of the cone.

The locations of the thermocouples and pressure orifices are shown in figure 1. There were 20 chromel-alumel thermocouples installed on the inner surface of the cone along the two meridians in the pitch plane. Ten thermocouples were also installed on the inner surface at station 1.70 so that a thermocouple was located every 30° around the body. The water

temperature was measured with a copper-constantan thermocouple located in the coolant flow pipe at approximately the location shown on the drawing.

Seven pressure orifices were installed along the two meridians at right angles to the thermocouple meridians. One additional orifice was located on one of the thermocouple meridians. The locations of these eight orifices are shown in figure 1. All pressure tubes were soldered to the stainless-steel model with a silver solder that has a melting point of $1,175^{\circ}$ F.

Test Facility

The tests were made in a 12-inch-diameter ethylene-heated hightemperature jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. This jet is a blowdown-type system consisting of storage spheres, a preheater, combustion chamber, and test nozzles. Air is kept in the storage spheres at a pressure of about 200 pounds per square inch and a dewpoint temperature of about -40° F. During operation, air from the spheres is preheated to approximately 9000 R and passed through ducts into a combustion chamber where ethylene is injected into the airstream. Ignition is obtained by firing a small solid-propellant rocket into the ethylene-air mixture. The products of the resulting combustion are passed through the 12-inch-diameter nozzle and exhausted at ambient sea-level pressure to obtain shock-free flow at a Mach number of 2.03. The temperature of the exhaust gas is varied by changing the ethylene-air ratio, and the static pressure of the exhaust gas is regulated with a valve upstream of the combustion chamber. The physical characteristics of this jet are discussed more fully in reference 4.

Figure 3 shows the model, with the umbrella nozzle, mounted in the jet. The upstream tip of the model was approximately 1.5 inches downstream of the exit plane of the jet nozzle, and the axes of the model and this nozzle coincided. The model was mounted on an elbow-shaped stand which encased all the thermocouple wires and pressure tubes to protect them from the high-temperature free stream. This elbow-shaped stand was mounted on a hydraulically operated, pivoted model support which provided for swinging the model into the test section after equilibrium conditions were reached. At the completion of each test the model was swung out of the jet before shutdown. Thus, the model was not subjected to the transient flow conditions which occur during the starting and shutdown of the jet.

TESTS

All tests were made in the free jet at M=2.03 with approximately sea-level static pressure conditions at the jet exit and at nominal free-stream total temperatures of 1,500°, 2,000°, 2,500°, and 3,000° R. The basic data for all tests are given in table I. The variation of temperature during each test was not more than $\pm 50^{\circ}$ R, which was considered acceptable. The free-stream Reynolds number per foot varied from 8×10^{6} at a free-stream temperature of about 1,500° R to 3×10^{6} at a free-stream temperature of about 3,000° R.

At approximately 1,500° R, a test was made with each coolant flow nozzle. The clearance between the umbrella nozzle and the model surface was 0.0025 inch. No significant differences in cooling were noted between any of these tests at 1,500° R, regardless of coolant-nozzle geometry. Hence, at 2,000° R, only the 0.150-inch-diameter axial nozzle and the umbrella nozzle (0.0025-inch clearance) were used. Also, at 2,000° R no significant differences in cooling were noted between the two types of nozzles. Hence, at 2,500° R and at 3,000° R only the 0.150-inch-diameter axial nozzle was used. To provide a basis for evaluating the effectiveness of these film-cooling tests, a test was performed without coolant at an arbitrarily chosen temperature of 1,500° R. Also, to determine the effect of angle of attack on the flow symmetry, a test was made at 1,500° R with each of the two types of coolant ejection nozzles at an angle of attack of 5°.

At the beginning of each test, the model was held out of the jet until the free-stream flow became steady. Then the coolant flow was started at a high rate and the model was swung into the jet. It took approximately I second for the model to reach the center line of the jet. When the model reached the center line, a microswitch on the arm of the injector stand made contact and the resulting signal was indicated on the recorder. The test then continued at sea-level free-stream pressure for approximately 40 seconds. During this time the coolant flow rate was reduced in steps until the downstream end of the model got hot. Then the coolant flow rate was increased in steps until approximately the original flow rate was obtained. No attempt was made to obtain identical decreasing and increasing stepwise flow rates.

RESULTS AND DISCUSSION

Pressure Distributions

A typical pressure distribution for each of the two different types of coolant flow nozzles is shown in figure 4. In these plots the local

surface pressure on the cone is expressed as a fraction of the free-stream stagnation pressure and plotted against model station. The data in this figure are for tests B-1807 (using a 0.150-inch-diameter axial coolant nozzle) and for B-1808 (using the umbrella coolant nozzle). The two identical symbols at each station represent the pressures for the two orifices at each station. Since there were no significant differences in the pressures on opposite meridians of the model, the angle of attack was apparently very close to zero.

The pressure distributions in figure 4 agree closely with those for all the other tests at zero angle of attack. The pressure distributions were apparently unaffected by changes in the diameter of axial coolant nozzles, in free-stream total temperature, and in coolant flow rate. Different types of nozzles, however, caused differences in the pressure distributions. The pressures near the tip of the cone were considerably less with the umbrella nozzle than with the axial flow nozzles. The tip geometry of the model was different for these two types of coolant nozzles. Apparently the local airstream on the forward part of the model expanded more when the umbrella nozzle was used, causing the low-pressure region shown in figure 4.

The pressure distribution predicted by cone theory (assuming a sharp tip) is also shown in figure 4. The pressures from both tests approach the theoretical pressure at the downstream end. Evidently the blunt tip of each nozzle forced the cone shock to be detached and hence caused the pressures over the whole model surface to be less than the theoretical pressures.

Temperature Distributions

Shown in figure 5 is the temperature distribution for a series of coolant rates for a typical test (B-1807). The temperatures are presented in the form of the parameter $T_{\rm W}$ - $T_{\rm C}/T_{\rm aW}$ - $T_{\rm C}$ where $T_{\rm W}$ is the equilibrium temperature of the cooled wall, $T_{\rm aW}$ is the theoretical equilibrium temperature of the uncooled wall, and $T_{\rm C}$ is the original temperature of the water.

The data for each test were obtained by decreasing the coolant flow rate in steps until the model became hot on the downstream end and then increasing it in steps to approximately the original rate. The method of plotting used in figure 5 depicts the approximate temperature distribution on the model surface for each coolant flow rate and assisted in the fairing of the data toward a family of curves.

The model was constructed to allow temperatures to be obtained on opposite meridians. In addition, several temperature measurements were

to be obtained at the 1.70-inch station on other meridians. In general, all the temperatures at the 1.70-inch station were in good agreement. Hence, to simplify the plot, only the temperatures on the two primary temperature-measuring meridians are plotted in figure 5. Some of the thermocouples were inoperative during the tests, and thus a complete temperature distribution on each of the two meridians could not be obtained. The temperatures that could be plotted are shown in the figure. Double symbols for a given station represent the temperatures on the two opposite meridians of the model. The agreement for most stations was good.

Figure 5 indicates that the water film for the four highest coolant flow rates extended completely to the measuring station farthest downstream; however, for the four lower coolant flow rates, the water film did not extend that far. For these lower coolant flow rates, a thermocouple on one side of the model would sometimes be covered with a water film while that on the opposite side at the same station would not. This fact indicated an asymmetry which appeared from the temperature distributions to be small in area. This slight asymmetry of the water film helped in some cases to locate more closely the downstream extent of the water film. The basic temperature data are given in table I.

Temperature and Coolant-Rate Parameters

A composite plot of temperature parameter against coolant-rate parameter is shown in figure 6 for all tests at zero angle of attack. The temperature parameter in this figure is for the thermocouple station farthest downstream, where the maximum temperatures always occurred. A similar plot of this type could be made for any other station on the model; however, the point of maximum temperature will be of greatest interest to the designer of a cooling system.

As the free-stream total temperature was increased the data, as shown in figure 6, became more sparse. This made the fairing of the higher temperature data somewhat in doubt. However, since the fairing of the 1,500° R data was fairly well established, the data at other temperatures were faired with a similar curve. At a free-stream total temperature of 3,000° R, no recorded data were obtained for coolant flow rates low enough to cause the model to become hotter than the boiling point. For this test, the break in the temperature curve was made at the lowest flow rate. A visual indicator used for monitoring revealed, during this 3,000° R test, that the downstream thermocouple station (thermocouple 1) was becoming hot at this low flow rate. The operator did not reduce the flow rate further for fear that the model would become hot enough to melt out the silver solder holding the pressure tubes in place. Therefore, from visual data that are not presented

in this figure, it is believed that the fairing of the data for $3,000^{\circ}$ R is approximately correct.

As indicated on figure 6, four different coolant nozzles were used in the tests at 1,500° R and two at 2,000° R. There were no significant differences in the results due to differences in the coolant nozzles.

The dashed curve which represents the locus of boiling points on the figure was calculated for each of the free-stream total temperatures. This was done by calculating the value of $T_{\rm w}$ - $T_{\rm c}/T_{\rm aw}$ - $T_{\rm c}$ for boiling at each free-stream total temperature and then fairing the dashed curve so that it would pass through the solid $T_{\rm t,\infty}$ curves at the respective boiling point values. For values of the flow parameter between 0 and 0.0014, the curve was faired from a knowledge of the two end points and the approximate point at 1,000° R. The value of $T_{\rm w}$ - $T_{\rm c}/T_{\rm aw}$ - $T_{\rm c}$ for boiling was calculated for 1,000° R as for the other $T_{\rm t,\infty}$. At a $T_{\rm t,\infty}$ value of 1,000° R, the value of flow-rate parameter was obtained by a cross fairing of $T_{\rm t,\infty}$ against flow-rate parameter as shown in figure 7.

Figure 7 presents the minimum flow rates necessary to maintain the water film to the thermocouple station farthest downstream at different free-stream total temperatures. For free-stream temperatures above 1,500° R, this curve apparently is a straight-line function of the free-stream total temperature. Below 1,500° R, the curve was faired to the calculated end point at a flow-rate parameter of zero. The minimum flow rate necessary to cool the entire model at $T_{\rm t,\infty}=1,000^{\circ}$ R is seen from this curve to be 0.0003. This is the value of flow-rate parameter at which the boiling point was plotted in figure 6 for $T_{\rm t,\infty}=1,000^{\circ}$ R.

As mentioned previously, the data in figure 6 are all for the thermocouple station farthest downstream. When the water rate is just sufficient to cover the model with a film back to this point, the temperature parameter at this station is seen to correlate very well with the boiling-point curve. The data of reference 5 for the station at the downstream end of the water film are shown in figure 6 by a solid symbol which also correlates with this boiling-point curve.

If the data are correlated on the basis of average surface temperature, different results will be obtained. At low heating rates such as existed in the tests of reference 5 ($T_{t,\infty}=1,000^{\circ}$ R), the average temperature correlates very closely with the saturated vapor temperature. At high heating rates such as existed in the present tests at $T_{t,\infty}=3,000^{\circ}$ R, the average temperature correlates better with the boiling temperature.

Efficiency of Film Cooling

The primary purpose of making these film-cooling tests was to obtain the data shown in figure 6. However, since the present method of cooling is not the only one that is being considered for possible use in cooling reentry models, some of the data are also presented in a form that shows the effectiveness or efficiency of the film-cooling method. Also, in this form the data from other cooling methods can be compared with the film-cooling method used in the present tests.

Figure 8 presents the data in the form of an efficiency factor Q_A/Q_T plotted against coolant flow-rate parameter $W/\rho_l V_l$. As used in this report, Q_A is the actual no-coolant heat load that would have existed on the model at the wall temperature of the cooling test. It was obtained by integrating the local heat loads over the complete model surface. The local heat loads were calculated for each station from the equation

$$q_l = h_l(T_{aw,l} - T_{w,l})$$

Then the actual no-coolant total heat load was obtained from the following integration

$$Q_A = \int_A q_l dA = 2\pi \int_S q_l r_l dS$$

This value of Q_A may not be the actual value of heat that is being absorbed by the water film, since the heat-transfer coefficient and equilibrium wall temperature may have varied considerably from their values on the dry wall. Reference 6 shows how the presence of a water film varies the heat-transfer coefficient, and reference 7 shows how the presence of a coolant varies the equilibrium wall temperature. This value of Q_A is a good reference number, however, that can be readily calculated for most model shapes for a given wall temperature.

As used in this report, Q_{T} is the theoretical no-coolant heat load that could have existed on the model at the wall temperature of the cooling test, based on the assumption that the full cooling capacity of the water was used. It was obtained by calculating the total heat necessary to raise the cooling water from its entering enthalpy to its final enthalpy. It may be shown in equation form as

 $Q_T = WA(Coolant final enthalpy - Coolant entering enthalpy)$

The coolant final enthalpy was always based on the average wall temperature of the model or on the boiling temperature of water on the model, whichever was greater. Always included in \mathbf{Q}_{T} was the heat of vaporization.

Figure 8 shows that at each value of $T_{t,\infty}$ the efficiency increased as the coolant flow rate decreased. For some reason the curves all seemed to tend toward $Q_A/Q_T=0.40$. This would seem to indicate that this method of film cooling is limited in efficiency to 40 percent.

The minimum value of the flow rate parameter corresponding to complete coverage of the model with a water film was determined for each value of $T_{t,\infty}$ in the present tests and in reference 5. The locus of these points in figure 8 is the straight line at $Q_A/Q_T=0.26$. Hence, the film cooling used in these tests is approximately 26 percent efficient if the minimum value of coolant flow rate is used to maintain a water film on the complete model. If more than this flow rate is used the efficiency decreases, and if less than this flow rate is used the efficiency increases. A disadvantage of decreasing the flow rate, however, is that the downstream end of the model becomes hot.

Also shown in figure 8 are the data from reference 8 which present the results of transpiration-cooling tests on an 8° total-angle cone at $T_{t,\infty}=1,000^{\circ}$ R. At the highest three flow rates of these transpiration tests the model temperature was maintained at approximately 125° to 140° F. At the lowest flow rate the flow was unsymmetrical as a result of gravity effects and part of the model became hot. From the data as presented in reference 8, it appears that this lowest flow rate would also have cooled the model below saturated steam temperature if the gravity effects had not existed. Hence, the straight line in figure 8 at $Q_{\rm A}/Q_{\rm T}=0.65$ is only approximate and perhaps should be at an even higher value. This $Q_{\rm A}/Q_{\rm T}=0.65$ is the approximate level of efficiency for minimum flow rates necessary to keep the complete model surface below saturated steam temperature. It appears from figure 8 that the transpiration-cooling method of reference 8 was at least 2.5 times as efficient as the film cooling of the present tests.

Effect of Angle of Attack

Included in the program were two tests at $\alpha = 5^{\circ}$ to determine the effect of angle of attack on the symmetry of the water film. The basic

data from these two tests are given in table I. These tests were not originally intended to be included in the program. Hence, the model was not oriented in the jet to give the best data; that is, the main thermocouple meridians were not on the leeward and windward sides of the model but were 90° from these positions. However, motion pictures of the tests and sediment rings on the model indicated that the water film on the model surface was very asymmetrical at $\alpha = 5^{\circ}$.

Two sketches (fig. 9) depict approximately this water-film asymmetry at $\alpha=5^{\circ}$ for each type of nozzle. It was thought that the umbrella-type nozzle would be less affected by angle of attack than the axial-type nozzle. However, the motion pictures and sediment rings did not show any significant difference between the two types of nozzles. Apparently this water film starts fairly symmetrically at the tip of the cone but, as a result of boundary-layer cross flow or pressure differences, the coolant is forced from the windward side to the leeward side.

SUMMARY OF RESULTS

Film-cooling tests, with water as the coolant, were made on an 80° total-angle cone in a free jet at sea-level pressure. The Mach number of the tests was 2.03 and the free-stream total temperatures were approximately 1,500°, 2,000°, 2,500°, and 3,000° R. The following results were obtained:

- 1. As the coolant rate was progressively reduced below the minimum required to keep a water film on the complete model, the temperature at the downstream end of the model became progressively higher.
- 2. There were no significant differences between the cooling results achieved with the axial nozzle and with the umbrella nozzle.
- 3. For the minimum coolant rates necessary to cover the complete model with a water film, the efficiency for all tests was approximately 26 percent, based on the total cooling capacity of the water.
- 4. When water is used as the coolant, transpiration cooling is at least 2.5 times as efficient as the film cooling of the present tests.
- 5. The water film on the model surface was fairly symmetrical for all tests at $\alpha = 0^{\circ}$ but was very asymmetrical for all tests at $\alpha = 5^{\circ}$.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., July 17, 1958.

REFERENCES

- 1. Allen, H. Julian, and Eggers, A. J., Jr.: A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at High Supersonic Speeds. NACA TN 4047, 1957. (Supersedes NACA RM A53D28.)
- 2. Carter, Howard S., and Bressette, Walter E.: Heat-Transfer and Pressure Distribution on Six Blunt Noses at a Mach Number of 2. NACA RM L57C18, 1957.
- 3. Purser, Paul E., and Hopko, Russell N.: Exploratory Materials and Missile-Nose-Shape Tests in a 4,000° F Supersonic Air Jet. NACA RM L56J09, 1956.
- 4. English, Roland D., Spinak, Abraham, and Helton, Eldred H.: Physical Characteristics and Test Conditions of an Ethylene-Heated High-Temperature Jet. NACA TN 4182, 1958.
- 5. O'Sullivan, William J., Chauvin, Leo T., and Rumsey, Charles B.: Exploratory Investigation of Transpiration Cooling to Alleviate Aerodynamic Heating on an 80 Cone in a Free Jet at a Mach Number of 2.05. NACA RM L53H06, 1953.
- 6. Kinney, George R., Abramson, Andrew E., and Sloop, John L.: Internal-Liquid-Film-Cooling Experiments With Air-Stream Temperatures to 2,000° F in 2- and 4-Inch-Diameter Horizontal Tubes. NACA Rep. 1087, 1952. (Supersedes NACA RM E50F19 by Kinney and Sloop, NACA RM E51C13 by Kinney and Abramson, and NACA RM E52B20 by Kinney.)
- 7. Rubesin, Morris W., Pappas, Constantine C., and Okuno, Arthur F.:
 The Effect of Fluid Injection on the Compressible Turbulent
 Boundary Layer Preliminary Tests on Transpiration Cooling of a
 Flat Plate at M = 2.7 With Air As the Injected Gas. NACA
 RM A55I19, 1955.
- 8. Chauvin, Leo T., and Carter, Howard S.: Exploratory Tests of Transpiration Cooling on a Porous 8° Cone at M = 2.05 Using Nitrogen Gas, Helium Gas, and Water as the Coolants. NACA RM L55C29, 1955.

TABLE I.- BASIC DATA

(a) Test B-1805

Coolant n	ozz]	Le																													
Type .																															Axial
Diamete:	r, i	n.																													0.200
Temperatu	re c	f	c	oc.	Laı	nt	, (^o R																							515
Total temp	pera	ιtι	\mathbf{r}	9 (ρſ	f	ree	9 8	str	e	ım.	, (PR.																		1,500
Static pro	essi	$r\epsilon$. (ρſ	f	ree	e :	sti	cea	ım.	,]	b	$\prime_{ m sc}$	1	in.	. ε	abs	5													14.40
Total pres	ssur	·e	oi	f 1	fre	ee	S	tre	an	1,	11	o/ε	ps	ir	n.	al	os														120.4
a, deg .																															0
Model sur	face	ŗ	re	ess	รนม	re ,	, .	Lb,	/sc	1 1	ln.	. 8	ibs	з,	at	t -	_													-	•
Orifice	1							•																							54.6
Orifice	2																														49.3
Orifice	3																														50.3
Orifice	4																														49.8
Orifice	5				:																										51.2
Orifice	6																														50.9
Orifice	7																														55.3
Orifice	8																														57.4
																			-	-	-	-	-	•	•	•	•	•	•	٠	21.

Thermocouple		Temperature coolant f	on cooled wa	all, ^O R, for 'sec, of -	
	0.0875	0.0670	0.0500	0.0347	0.0194
1 2 3	691 710	690 675	708 710	1,340	1,330 1,300
24 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	683 679 665 655 655 644 617 529 573 636 648 682 678 680 732 707 722 678 675 669 668 669 665	672 672 660 655 650 630 585 570 630 655 675 669 663 663 663 663 663 665 665 6667	672 672 672 658 655 655 593 577 648 663 664 655 665 665 665 665 6669	790 740 684 676 677 668 636 589 668 676 687 683 691 726 772 1,063 763 675 675 738 681 686 697	1,175 740 680 668 666 657 637 588 672 692 763 756 1,215 1,208 990 1,315 800 726 780 750 860 698 686
30	681	660	660	697 686	693

TABLE I.- BASIC DATA - Continued
(b) Test B-1807

Coolant nozz																									
Туре																									Axial
Diameter,																									0.050
Temperature	$\circ f$	cc	ool	Laı	ıt,	, (PR			•				•				•						•	515
Total temper	ati	ure	e (σf	fr	ee	9 8	tr	ee	ım ,	, (R													1,460
Static press	ur	e d	of	f	cee	2 5	str	ea	m,	, 1	b/	/sc	1 1	ln.	. 8	bs	3								14.80
Total pressu	re	of	f f	re	ee	st	tre	an	٠,	11	/8	q	ir	ı.	at	s									120.4
a, deg																									0
Model surfac	e j	pre	289	su	re,	,]	Lb/	′sg	_ 1	n.	. 8	bs	٠,	at	; -	-									
Orifice l																									54.3
Orifice 2																									51.4
Orifice 3																									51.1
Orifice 4																									50.8
Orifice 5																									53.1
Orifice 6																									52.6
Orifice 7																									55.0
Orifice 8																									57.5

Thermocouple		Te	mperatur coolant	e on coo	led wall ce, lb/se	, OR, fo	or	
Thermocoupte	0.0695	0.0611	0.0514	0.0447	0.0410	0.0319	0.0285	0.0181
1 2	713 684	687 683	731 705	780 737	1,020 8 0 6	1,138 1,073	1,210 1,176	
3 4 5 6 7 8 9	668 664 654 656 650 636	668 664 654 667 662 691	673 668 654 661 641 685	679 668 699 656 656 642	702 668 654 667 	690 679 660 661 661 653	724 685 660 661 650 653	923 702 670 639 662 659
10 11 12 13 14 15 16	585 642 656 688 667 665	573 652 661 703 672 661	568 647 661 651 667 665	573 642 656 688 667 665	573 652 667 703 679 676	585 656 661 696 684 700	577 658 661 696 686 73 ⁴	584 658 667 742 751 1,049
17 18 19	681 712	660 686	687 708	725 744	720 744	1,084 1,121	1,185 1,220	1,196 1,213
20 21 22	667 654	689 660	696 660	672 654	718 666	689 66 0	778 700	785 711
23 24 25 26 27 28	663 660 660 662 658	656 660 660 662 657	663 660 660 662 663	663 660 666 662 658	656 660 670 662 663	671 660 707 667 663	671 665 686 671 672	708 684 688 688
29 30	 661	667	667	 661	667	671	671	667

(c) Test B-1808

Coolant nozzle	
Type	nbrella
Clearance, in	0.0025
Temperature of coolant, OR	51 0
Total temperature of free stream, OR	1,460
Static pressure of free stream, lb/sq in. abs	14.80
Total pressure of free stream, lb/sq in. abs	120.4
a, deg	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	56.4
Orifice 2	52.4
Orifice 3	39.5
Orifice 4	40.1
Orifice 5	54.3
Orifice 6	52.9
Orifice 7	55.8
Orifice 8	57.9

Thermocouple					ed wall,	OR, for		
Inclinocoup IC	0.0535	0.0500	0.0410	0.0334	0.0299	0.0250	0.0188	0.0126
1 2 3	736 880 	850 761	985 691 	1,110 825	1,320 1,295	1,280 1,175	1,280 1,250	1,320 1,295
5 6	666 600 650 659	681 660 656 668	692 676 656 665	732 687 663 668	755 720 683 668	770 726 679 673	1,202 938 722 685	1,278 1,250 878 732
7 8 9	- 638		 648		661			661
10 11 12 13 14 15 16	562 632 642 695 665 660	571 645 658 704 669 666	567 644 653 695 665 660	571 655 658 704 669 666	575 655 653 704 665 667	571 660 664 704 665 666	576 661 658 704 668 670	580 655 653 704 703 742
17 18 19 20	667 687	688 736	683 705	722 763	716 960	722 753	1,230 1,200	1,210 1,260
21 22	686 656	679	725 724	679	1,195 701			1,305
23 24 25 26 27 28	665 656 656 665 666	669 668 668 673 674	726 724 724 728 729	669 668 672 673 674	666 667 667 668 669	669 668 672 674 680	675 672 679 685 690	668 667 679 673 711
29 30	666	672	 726	672	720	1,315	1,315	720

TABLE I.- BASIC DATA - Continued

(d) Test B-1809

Coolant nozzle	
Type	Umbrella
Clearance, in	0.0025
Temperature of coolant, OR	515
Total temperature of free stream, OR	2,000
Static pressure of free stream, lb/sq in. abs	14.80
Total pressure of free stream, lb/sq in. abs	120.0
α, deg	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	55.1
Orifice 2	51.0
Orifice 3	41.5
Orifice 4	38.8
Orifice 5	54.3
Orifice 6	53.7
Orifice 7	54.5
Orifice 8	56.6

Thermocouple		Te		e on coo flow rat			r	
incimocoupie	0.1110	0.1048	0.1006	0.0945	0.0924	0.0750	0.0702	0.0535
1 2 3 4	835 772	835 747	711 703 688	790 713 694	1,422 628	1,422 628 722	1,520 1,425 	1,660 1,585 920
5 6 7	710 708 702	705 700 702	688 679 686	688 679 686	710 700 707	682 696	694 690	710 696
8 9 10			 567	 567				
11 12 13 14 15 16	571 650 686 702 710 708	571 662 690 702 710 713	645 675 694 699	650 675 689 699 696	571 667 690 702 710 708	577 678 696 702 710 708	571 667 686 689 699 696	577 682 690 696 699 7 03
16 17 18 19 20 21	718 732	723 722	702 684	702 701	718 722	723 726	707 910	723 1,162
21 22 23 24 25	702 690 672	702 690 672	680 675 665	680 630 672	708 701 688	708 696 688	690 686 679	1,580 690 688
26 27 28 29	689 697 762	695 697 754 	673 665 733	674 675 733	695 697 762	701 702 762	680 686 749	689 697 754
30	710	710	688	688	710	710	716	750

(e) Test B-1810

Coolant nozzle	
Туре	
Diameter, in	0.150
Temperature of coolant, OR	510
Total temperature of free stream, OR	1,440
Static pressure of free stream, lb/sq in. abs	14.67
Total pressure of free stream, lb/sq in. abs	120.4
α , deg α ,	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	55.7
Orifice 2	51.7
Orifice 3	53.4
Orifice 4	50.7
Orifice 5	
Orifice 6	57.6
Orifice 7	55.7
Orifice 8	60.9
0111100 0	50.7

Thermocouple		Te	mperatur coolant	e on coo flow rat	led wall e, lb/se	, ^O R, fo	r	
Thermocoupie	0.0694	0.0645	0.0597	0.0506	0.0431	0.0416	0.0299	0.0183
1 2	680 667	695 681	690 669	768 724	756 724	805 768	1,200 1,150	1,170 1,132
3 4 5 6	667 667 651 653	670 678 665	667 667	678 678 665	670 670 663 660	678 678 665	728 688 	800 765 840 668
7 8 9								
10 11 12 13 14 15	558 617 643 656 665 668	571 640 663 663 669 672	558 625 647 656 666	571 645 663 668 678 672	567 640 656 656 666 668	571 660 667 668 677 672	582 667 677 672 677 679	588 667 670 668 681 720
17 18 19	660 665	673 679	668 668	673 695	 674 710	680 732	740	812
20 21 22	 651	 668	 651	 668	 657	 673	 673	668
23 24 25 26 27 28	655 657 653 654 650	666 672 679 675 667	661 657 647 654 656	669 672 684 669 667	666 665 683 660 656	675 678 678 716 669 667	675 683 738 686 681	686 704 885 750 693
29 30	665	665	665	660	668	668	675	675

(f) Test B-1811

Coolant nozzle	
Туре	Axial
Diameter, in	0.150
Temperature of coolant, OR	510
Total temperature of free stream, OR	2,000
Static pressure of free stream, lb/sq in. abs	14.70
Total pressure of free stream, lb/sq in. abs	120.0
α, deg	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	56.9
Orifice 2	5 0. 2
Orifice 3	51.7
Orifice 4	49.0
Orifice 5	
Orifice 6	57.4
Orifice 7	54.5
Orifice 8	59.3

Thermocouple		Te			oled wall ce, lb/se		r	
Thermocoupie	0.1450	0.1332	0.1221	0.1142	0.1130	0.1012	0.0924	0.0666
1 2	702 697	723 703	756 746	745 724	1,154 735	1,130 741	863 1,139	1,565 1,350
3 4 5 6 7 8	688 688 679 680	694 694 684 685	710 705 689 696	694 694 684 690	705 705 689 696	710 705 689 690	700 700 689 690	705 700 684 696
9								
10 11 12 13 14 15 16 17 18	567 656 696 696 704 702	571 656 696 696 704 702 711	587 705 702 696 710 702 718	588 657 696 696 704 702	583 705 703 703 715 708	583 671 702 702 710 702	592 678 711 708 .715 709	693 688 718 708 715 708
1 [.] 9 20	695	701 	710	710	717	717 	971	1,193
21 22	679	685	697	685	697	697	690	690
23 24 25 26 27 28	685 683 679 680 677	685 683 679 680 681	690 693 701 697 691	685 683 679 680 681	696 693 695 691 691	690 693 695 691 691	696 694 694 691 686	696 693 726 691 691
29 30	697	697	697 .	697	697	686	697	686

(g) Test B-1813

Coolant nozzle	
Type	xial
2100010 001 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.150
Tomporturate of Coofficient, in the Confession of the Confession o	510
10 tol toll polarisa of 2 tol toll toll toll toll toll toll tol	,500
504010 probbate 01 1100 Bulletin, 1-/1-1	4.53
10 dai pressare of free boream, 15/54 in and 1 to 1 to 1 to 1 to 1	19.2
α, deg	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	
Orlice 2	
	50.2
Office +	47.7
Orifice 5	
Office of a second of the contract of the cont	
Orifice 7	52.1
Orifice 8	

Thermocouple		Te	mperatur coolant	e on coo flow rat	led wall e, lb/se	, ^O R, fo	r	
The Timo Coupie	0.1578	0.1487	0.1418	0.1320	0.1140	0.1118	0.0959	0.0771
1 2	825 781	726 684	862 807.	799 754	973 798	88o	1,568 935	1,740 1,540
3 4 5 6	731 736	68 0 698	725 742	680 709	680 709	725 725	720 709	788 725
7 8	714	693 	714	688 	671 	714 	704	709
9 10 11 12 13 14 15	577 653 687 699 712 712	569 653 678 684 708 701	577 665 697 710 723 712	659 687 699 708 701	569 669 691 699 708 706	574 669 697 709 712 712	569 674 697 699 708 706	578 690 707 710 712 712
17 18 19 20	721	705 709	731 	709 724	691 751	712	715 794	709
21 22 23 24 25	711 698 701	694 692 695	740 703 701	701 698 701	707 698 701	720 703 705	711 709 705	718 709 711
26 27 28	 709	 694	 714	 694	 699	 709	70 ¹ 4	709
29 30	627	616	623	616	610	616	602	688

(h) Test B-1814

Type	
	50
Diameter, in	
Temperature of coolant, OR	-
Total temperature of free stream, OR	
Static pressure of free stream, lb/sq in. abs 14.	
Total pressure of free stream, lb/sq in. abs	
a, deg	5
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	
Orifice 2	
Orifice 3	_
Orifice 4 42	-
Orifice 5	
Orifice 6	
Orifice 7	•9
Orifice 8	

Thermocouple		Temper cool	rature on Lant flow	cooled wa	ll, ^O R, f	for	
	0.0771	0 .0 652	0.0 592	0.0571	0.0520	0.0 488	0.0387
1 2 3	1,510	1,031	1,510	1,170	1,425	1,290	1,435
4 5 6	1,425	792 724	1,450	1,096 914	1,410	1,260	1,445
7 8	709	667	778 	709 	800	866	1,345
9 10 11 12 13 14 15 16 17	568 673 691 695 701 717	552 642 653 660 667 681	573 684 691 695 734 891	559 658 664 679 689 759	573 679 681 688 817 1,215	569 673 671 701 811 1,044	589 722 873 1,179 1,315 1,350
19 20 21 22	682	891 990 643	 687	1,082 1,125 654	 677	666	681
23 24 25 26	712 769	681 709	875 1,270	775 805	1,255 1,360	1,108 1,202	1,398 1,440
27 28	834	743	1,378	865	1,385	1,220	1,432
29 30	862	643	693	660	681	670	681

TABLE I.- BASIC DATA - Continued

(i) Test B-1815

Coolant no:																															
Type																			•						•	•	٠			•	Umbrella
Clearance	e,	ir	١.																					٠	•				•	•	0.0025
Temperature	e o	ſ	cc	ool	ar	ıt,	, (PR																		•			•	•	510
Total tempe	era	tυ	ıre	• ()f	fı	·ee	9 5	tr	e٤	ım,	, (R					٠		•					•				•	•	
Static pres	ssu	re	3 ()f	fı	ree	9 8	str	ee	m,	, 1	Lb,	so	1 :	in.	. ε	bs	3		•			•	•	•	٠			•		14.57
Total press																															120.4
α , deg						•			. •						•	•	•	•	•		•	•		•	•	•	•		٠	•	5
Model surfa																															
Orifice :	1							٠			•		•	•	•	•	٠		•	٠	٠	٠	•	٠	•	٠	•	•	٠	٠	
Orifice :																															10.0
Orifice															•																48.8
Orifice																															3 5.1
Orifice	5	•			•			•		•	•		•	•	•		•	•	•	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	
Orifice (6								٠		•			•	•	•		•	٠	٠	•	•	•	•	•	•	٠	•	٠	•	
Orifice '	7					٠								•				•		٠	•	•	٠	•	•	•	٠		•	٠	50.0
Orifice (3	٠	٠	•	•					•	•	•	•	•	•	٠	•	٠	٠	•	•	٠	٠	•	٠	•	٠	٠	•	•	

Thermocouple		Te	mperatur coolant	e on coo flow rat	led wall e, lb/se	, ^O R, fo	r	
Thermocouple	0.0840	0.0735	0.0722	0.0596	0.0500	0.0416	0.0250	0.0167
1 2 3 4	829 735	1,270 	1,083	1,305 768	1,305 	1,287 	1,310 768	1,313 746
5 6 7 8	650 	970	651	862		1,288	1,318	1,318
9 10 11 12 13 14 15 16	533 615 643 653 656 652	538 626 658 666 684 710	538 630 647 653 656 670	553 652 663 670 745 804	568 717 916 1,285 1,320 1,318	593 1,044 1,163 1,285 1,320 1,318	660 1,197 1,249 1,305 1,320 1,318	735 1,238 1,279 1,305 1,333 1,323
17 18 19 20 21 22	703 769 615	1,196 1,223 	768 1,029 	1,080 1,083 	1,313 1,275 	1,313 1,274 	1,313 1,295	1,319 1,311 631
23 24 25 26 27	663	723 866	687 744	1,153 1,325	1,318 1,330	1,318 1,325	1,335 1,345	1,345 1,350
28 29 30	671 586	1,247 597	774 711	1,320 578	1,320 578	1,320 637	1,332	1,320 898

(j) Test B-1816

Coolant nozz	le																												
Туре																													Axial
Diameter,																													0.050
Temperature	$\circ f$	c	oc.	Lar	ıt,	, (PR																						None
Total temper	atı	ure	e (\mathbf{f}	fr	•ee	9 8	tr	ea	m,	, с	R																	1,360
Static press	ure	e d	οſ	fı	ee	9 8	tr	ea	m,	. 1	.b/	sq.	ı i	ln.	, ε	bs	3												14.80
Total pressu																													120.5
α , deg																										•		•	0
Model surfac	_ ,			* 1 1 2	10	1	1. /			~		ha		0.4															
Orifice l		pre																											
Orifice l Orifice 2					•		•																						
Orifice 1 Orifice 2 Orifice 3	•				•	:	•	:					•	:	:	:	•												 53.5
Orifice 1 Orifice 2 Orifice 3 Orifice 4	:		•	· ·		•	•	· ·	•	· ·	:	:	•	:	:	:		:		:	:	:	:	:	•		:		
Orifice 1 Orifice 2 Orifice 3 Orifice 4 Orifice 5			:					:		•						· · ·	:		:		 			 					53.5
Orifice 1 Orifice 2 Orifice 3 Orifice 4 Orifice 5 Orifice 6										•						:		:			 •	:		 :	:				53.5 51.3
Orifice 1 Orifice 2 Orifice 3 Orifice 4 Orifice 5										•						:	:	:			 	:		 :	:				53.5 51.3

Thermocouple		ı	Transien		atures or		^o R,	
-	0.5	1.5	2.5	3.5	4.5	7.5	10.5	16.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	690 	875 893 908 721 908 907 880 910 900 878 835 902 902	786 1,024 786 1,026 1,021 984 1,031 1,011 958 1,019	1,070 1,083 1,102 1,102 828 1,099 1,097 1,092 1,070 1,026 1,097 1,099	1,116 	1,204 1,218 1,213 1,213 1,213 1,168 1,232 1,217 1,207 1,162 1,211 1,231	1,237 1,252 1,241 1,240 1,238 1,186 1,253 1,241 1,236 1,235	1,254 1,262 1,258 1,258 1,257 1,254 1,198 1,267 1,252 1,248 1,248
26 27		902 	1,029	1,110	1,155	1,235	1,255	1,264
28 29 30	699 	898 	1,010	1,091	1,140	1,221	1,252	1,265

TABLE I.- BASIC DATA - Concluded

(k) Test B-1818

Coolant nozzle Type	
Temperature of coolant, OR	LO
Total temperature of free stream, OR	50
Static pressure of free stream, lb/sq in. abs $\dots \dots 14.5$	-
Total pressure of free stream, lb/sq in. abs	.7
a, deg	0
Model surface pressure, lb/sq in. abs, at -	
Orifice 1	
Orifice 2	
Orifice 3	
Orifice 4	.6
Orifice 5	
Orifice 6	
Orifice 7	.6
Orifice 8	

Thermocouple		Te	mperatur coolant	e on coo flow rat	led wall ce, lb/se	oR, fo	or	
The Imocoupte	0.2140	0.1970	0.1913	0.1844	0.1790	0.1705	0.1614	0.1490
1 2	 723	 735	830	 830	 790	830	832	880
3 4 5	710	720 	733	738 	721	738 	718	738
5 6 7 8	695	706	733	727	710	727	719	733
9 10			 610	 599	 567	 586	 576	 576
11 12 13 14	570 650 681 900	570 661 687 705 713	670 702 716 725	670 702 710 713	655 697 711 720	678 706 717 720	678 707 717 725	682 710 722 731
15 16 17 18	713 712 711	719 718	724 734	719	719 722	719 728	724 728	730 734
19 20 21	717	749			780			
22								
23 24 25 26	694 694	704 704	713 720	720 710	713 705	720 720	720 710	720 713
27 28	678	703	728	728	712	723	723	728
29 30	624	531	536	531	531	616	531	531

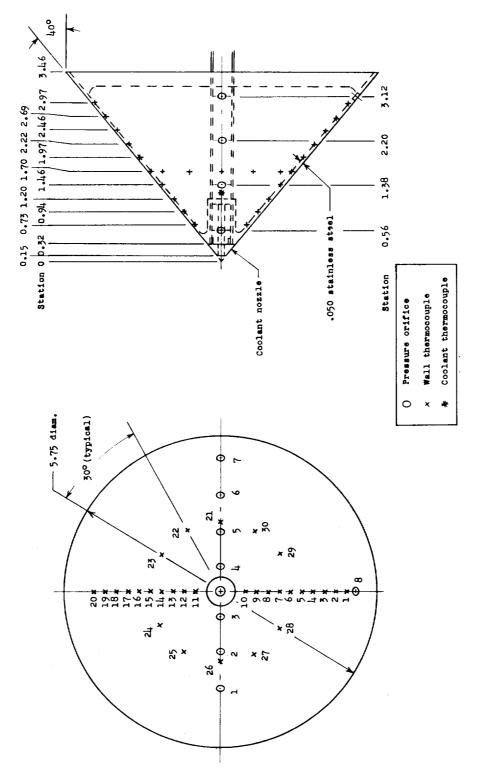
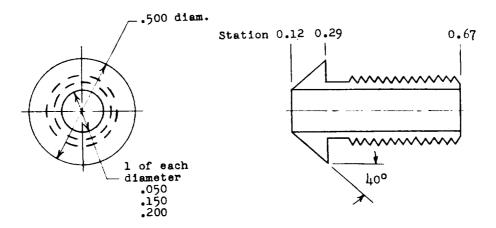



Figure 1.- Drawing of 80° total-angle cone showing locations of thermocouples and pressure orifices. All dimensions are in inches.

Axial nozzles

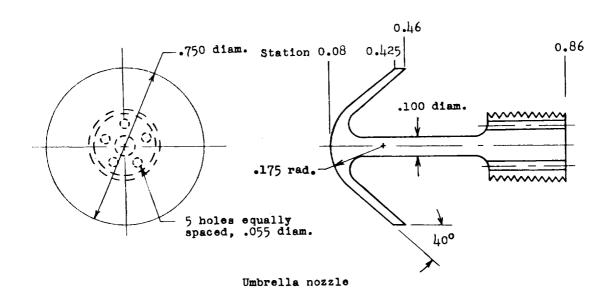


Figure 2.- Drawings of the four nozzles (not to scale). All dimensions are in inches.

Figure 3.- Photograph of the 80° total-angle cone mounted in the ethylene-heated high-temperature jet.

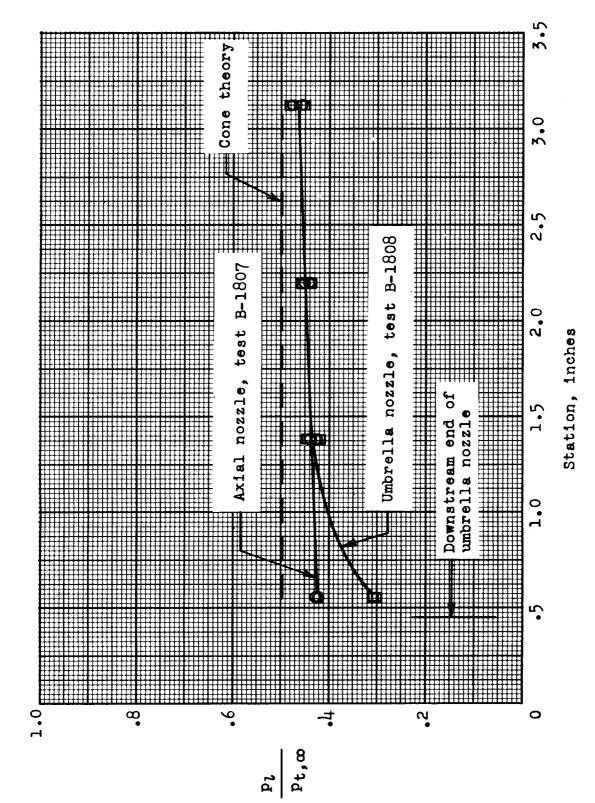


Figure h.- Typical pressure distributions for the two types of coclant flow nozzles.

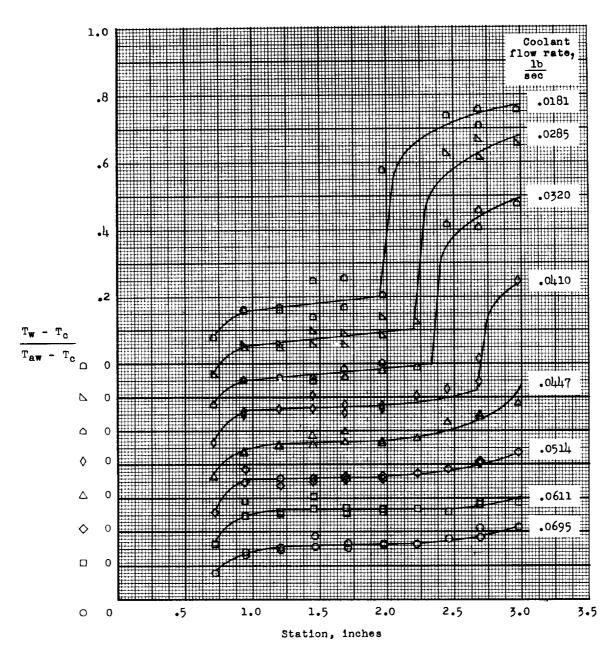


Figure 5.- Temperature distributions for a series of coolant flow rates from a typical test (test B-1807).

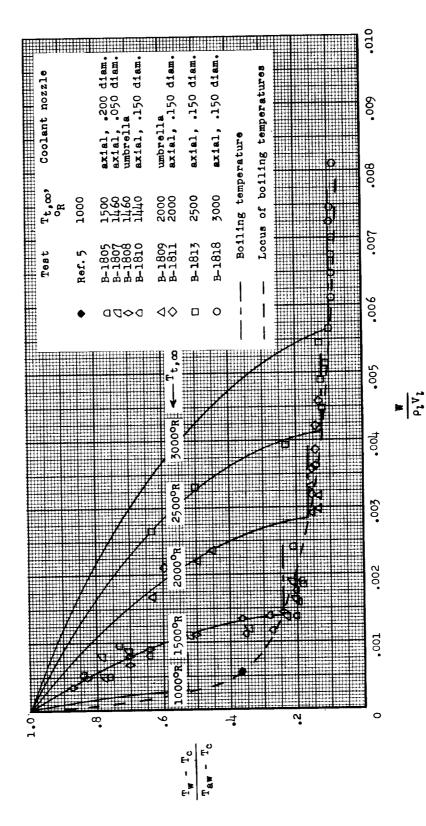


Figure 6.- Effect of flow rate parameter on the temperatures at the thermocouple station farthest downstream.

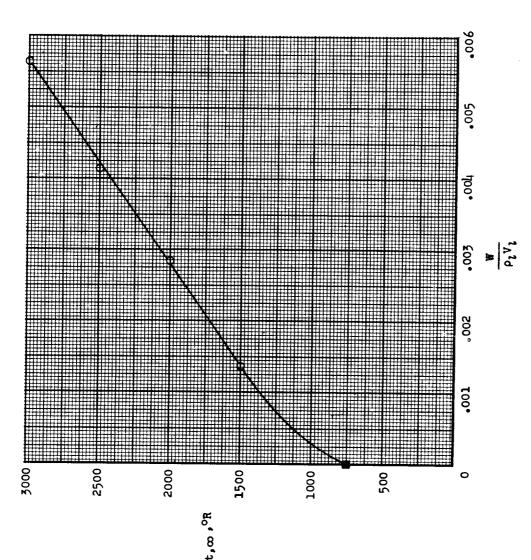


Figure 7.- Minimum flow rates necessary to maintain boiling temperature of coolant (approximately 750° R for this model) at thermocouple station farthest downstream as a function of freestream total temperature.

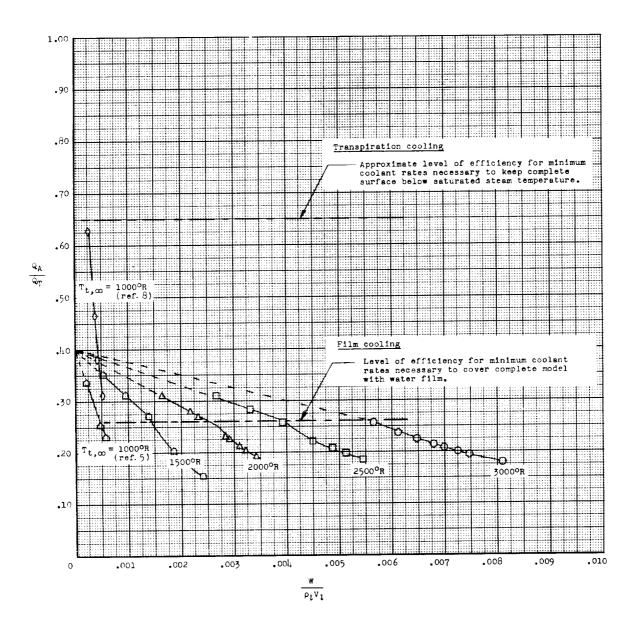
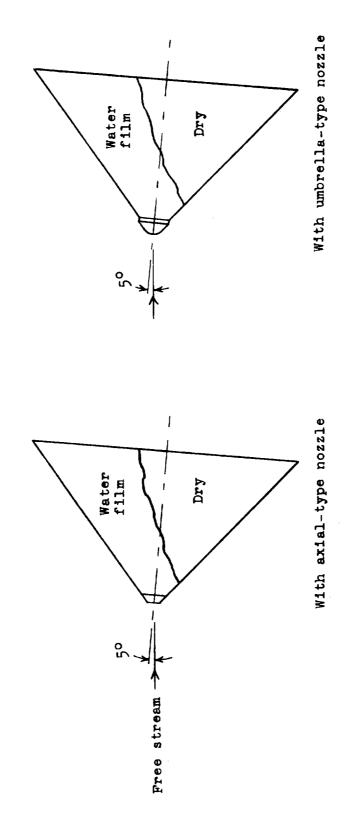



Figure 8.- Efficiency of film cooling from reference 5 and present tests, and of transpiration cooling from reference 8.

for $\alpha = 5^{\circ}$ Figure 9.- Sketch showing approximately the water film asymmetry at each type of coolant nozzle.

NASA MEMO 12-27-58L National Aeronautics and Space Administration. WATER-FILM COOLING OF AN 80° TOTAL- ANGLE CONE AT A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL TEMPERATURES UP TO 3,000° R. Howard S. Carter. January 1959. 32p. diagrs., photo., tab. (NASA MEMORANDUM 12-27-58L) (Film-cooling tests, with water as the coolant, were made on an 80° total-angle cone in a Mach number 2 free jct at sea-level pressure. The tests were made at free-stream total temperatures from 1,500° to 3,000° R and at free-stream Reynolds numbers per foot from 8 x 10° to 3 x 10°. With low coolant rates, the downstream end of the model became very hot. Increasing the angle of attack from 0° to 5° caused the water film on the model surface to become very	1. Heat Transfer, Aerodynamic (1.1.4.2) 2. Bodies - Surface Conditions (1.3.2.4) I. Carter, Howard S. II. NASA MEMO 12-27-58L	NASA MEMO 12-27-58L National Aeronautics and Space Administration. WATER-FILM COOLING OF AN 80° TOTAL- ANGLE CONE AT A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL TEMPERATURES UP TO 3,000° R. Howard S. Carter. January 1959. 32p. diagrs., photo., tab. (NASA MEMORANDUM 12-27-58L) (Title, Unclassified) Film-cooling tests, with water as the coolant, were made on an 80° total-angle cone in a Mach number 2 free jet at sea-level pressure. The tests were made at free-stream total temperatures from 1,50° to 3,000° R and at free-stream Reynolds numbers per foot from 8 x 10° to 3 x 10°. With low coolant rates, the downstream end of the model became very hot. Increasing the angle of attack from 0° to 5° caused the water film on the model surface to become very	1. Heat Transfer, Aerodynamic (1.1.4.2) 2. Bodies - Surface Conditions (1.3.2.4) I. Carter, Howard S. II. NASA MEMO 12-27-58L
	NASA		NASA
Copies obtainable from NASA, Washington		Copies obtainable from NASA, Washington	
NASA MEMO 12-27-58L National Aeronautics and Space Administration. WATER-FILM COOLING OF AN 80° TOTAL- ANGLE CONE AT A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL TEMPERATURES UP TO 3,000° R. Howard S. Carter. January 1959. 32p. diagrs., photo,, tab. (NASA MEMORANDUM 12-27-58L) Film-cooling tests, with water as the coolant, were made on an 80° total-angle cone in a Mach number 2 free jet at sea-level pressure. The tests were made af free-stream total temperatures from 1,500° to 3,000° R and af free-stream Reynolds numbers per foot from 8 x 106 to 3 x 106. With low coolant rates, the downstream end of the model became very hot. Increasing the angle of attack from 0° to 5° caused the water film on the model surface to become very asymmetrical.	1. Heat Transfer, Aerodynamic (1.1.4.2) 2. Bodies - Surface Conditions (1.3.2.4) I. Carter, Howard S. II. NASA MEMO 12-27-58L	NASA MEMO 12-27-58L National Aeronautics and Space Administration. WATER-FILM COOLING OF AN 80° TOTAL- ANGLE CONE AT A MACH NUMBER OF 2 FOR AIRSTREAM TOTAL TEMPERATURES UP TO 3,000° R. HOWARD S. Carter. January 1959. 32p. diagrs., photo., tab. (Title, Unclassified) Film-cooling tests, with water as the coolant, were made on an 80° total-angle cone in a Mach number 2 free jet at sea-level pressure. The tests were made at free-stream total temperatures from 1,500° to 3,000° R and at free-stream Reynolds numbers per foot from 8 x 10° to 3 x 10°. With low coolant rates, the downstream end of the model became very hot. Increasing the angle of attack from 0° to 5° caused the water film on the model surface to become very asymmetrical.	1. Heat Transfer, Aerodynamic (1.1.4.2) 2. Bodies - Surface Conditions (1.3.2.4) I. Carter, Howard S. II. NASA MEMO 12-27-581.
	NASA		NASA
Copies obtainable from NASA, Washington		Copies obtainable from NASA, Washington	
